
More	examples	of	invariants

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	7.2

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson	Introduction

• In	Lesson	7.1,	we	introduced	context	
arguments	and	invariants	to	solve	problems	
involving	lists

• In	this	lesson,	we'll	use	these	ideas	to	solve	
problems	involving	trees	and	mutually-
recursive	data	definitions.

2

Example	2:	mark-depth
(define-struct bintree (left data right))

;; A BinTreeOfX is either
;; -- empty
;; -- (make-bintree BinTreeOfX X BinTreeOfX)

3

A	BintreeOfX is	a	binary	tree	with	a	
value	of	type	X in	each	of	its	nodes.		
For	example,	you	might	have		
BintreeOfSardines.	This	is,	of	
course,	a	different	notion	 of	binary	
tree	than	we	saw	last	week.		

Example	2:	mark-depth	(2)

;; mark-depth : BinTreeOfX -> BintreeOfNumber
;; RETURNS: a bintree like the original, but
;; with each node labeled by its depth

4

Example

5

2 2

1 1

0

"bar" "quux"

"foo" "frob"

"baz"

Here's	an	example	of	the	argument	and	result	of	
mark-depth.		The	argument	is	a	BintreeOfString
and	the	result	is	a	BintreeOfNumber,	just	like	the	
contract	says.

Template	for	BinTreeOfX
(define (bintree-fn tree)
(cond
[(empty? tree) ...]
[else (...

(bintree-fn (bintree-left tree))
(bintree-data tree)
(bintree-fn (bintree-right tree)))]))

6

If	we	follow	the	recipe	for	
writing	a	template,	this	is	
what	we	get	for	BintreeOfX.

Filling	in	the	template
(define (mark-depth tree)
(cond
[(empty? tree) ...]
[else (make-bintree

(mark-depth (bintree-left tree))
...
(mark-depth (bintree-right tree)))]))

7

But	how	do	we	know	the	depth?

So	let's	add	a	context	argument
;; mark-subtree : BinTreeOfX NonNegInt-> BinTreeOfNumber
;; GIVEN: a subtree stree of some tree, and a non-neg int n
;; WHERE: the subtree occurs at depth n in the tree
;; RETURNS: a tree the same shape as stree, but in which
;; each node is marked with its distance from the top of the tree
;; STRATEGY: Use template for BinTreeOfX on stree
(define (mark-subtree stree n)

(cond
[(empty? stree) empty]
[else (make-bintree

(mark-subtree (bintree-left stree) (+ n 1))
n
(mark-subtree (bintree-right stree) (+ n 1)))]))

8

The	invariant	tells	
us	where	we	are	
in	the	whole	 tree

The	RETURNS	clause	
tells	us	how	our	answer	
fits	into	the	original	

problem.

If	stree is	at	depth	n,	then	its	sons	
are	depth	n+1.		So	the	WHERE	clause	
is	satisfied	at	each	recursive	call.

And	we	need	to	reconstruct	the	
original	function,	as	usual

;; mark-tree : BinTreeOfX -> BinTreeOfNumber
;; GIVEN: a binary tree
;; RETURNS: a tree the same shape as tree, but in which
;; each node is marked with its distance from the top of
;; the tree
;; STRATEGY: call a more general function
(define (mark-tree tree)
(mark-subtree tree 0))

9

The	whole	 tree	is	a	subtree,	and	
its	top	node	 is	at	depth	0,	so	the	
invariant	of	mark-subtree is	

satisfied.

What	about	mutually	recursive	data	
definitions?

• You’ll	have	two	mutually	recursive	functions	to	
handle	the	sub-Sos and	sub-Loss– nothing	else	
changes.

• Let's	write	this	out	by	writing	down	the	Sos
and	Loss	templates	and	adding	a	context	
argument.

10

Template	for	SoS and	LoSS,	with	
context	argument	(part	1)

;; GIVEN: a SoS sos that is a subpart of some
;; larger SoS sos0, and <describe ctxt>
;; WHERE: <describe how ctxt represents the
;; portion of sos0 that lies above sos>
;; RETURNS: <something in terms of sos and sos0>
;; STRATEGY: Use the template for SoS on subsos

(define (sub-sos-fn subsos ctxt)
(cond
[(string? subsos) ...]
[else (... (sub-loss-fn subsos (... ctxt)))]))

11

This	still	fits	the	SoS
template

When	we	have	a	recursive	call,	we	
use	a	new	value	of	the	context	
argument,	 so	that	sub-loss-fn's
invariant	will	be	true.

The	invariant	
documents	 the	
meaning	of	ctxt

Template	for	SoS and	LoSS,	with	
context	argument	(part	2)

;; GIVEN a LoSS loss that is a subpart of some
;; larger SoS sos0, and a <describe ctxt>
;; WHERE: <describe how ctxt represents the
;; portion of sos0 that lies above loss>
;; RETURNS: <something in terms of loss and sos0>
;; STRATEGY: Use template for Loss on sublos
(define (sub-loss-fn subloss ctxt)
(cond
[(empty? subloss) ...]
[else (...

(sub-sos-fn (first subloss) (... ctxt))
(sub-loss-fn (rest subloss) (... ctxt))]))

12

The	invariant	again	
documents	the	
meaning	of	ctxt

Each	recursive	call	uses	a	new	value	for	the	context	argument,	
so	that	each	called	function's	invariant	will	be	true.

This	still	fits	the	
LoSS template

Template	for	SoS and	LoSS,	with	
context	argument	(part	3)

;; GIVEN a SoSS sos0
;; RETURNS: <something>
;; Strategy: call a more general function
(define (sos-fn sos0)
(sub-sos-fn sos ...))

13

Pass	sub-sos-fn a	value	for	its	context	argument	
that	describes	the	empty	context– that	is,	one	

that	will	make	its	invariant	true.

Of	course	we	
need	a	function	

for	the	whole	SoS!	

Summary

• You	should	now	be	able	to:
– explain	the	difference	between	structural	
arguments	and	context	arguments

– understand	how	context	arguments	represent	
contexts

– document	this	representation	as	an	invariant	in	
the	purpose	statement

– use	these	ideas	to	solve	problems	for	lists,	trees,	
and	mutually-recursive	data	definitions.

14

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	7.1
• Go	on	to	the	next	lesson

15

