More examples of invariants

CS 5010 Program Design Paradigms
“Bootcamp”

Lesson /.2

@ @ @ © Mitchell Wand, 2012-2015
s 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson Introduction

* In Lesson 7.1, we introduced context
arguments and invariants to solve problems
involving lists

* In this lesson, we'll use these ideas to solve
problems involving trees and mutually-
recursive data definitions.

Example 2: mark-depth

(define-struct bintree (left data right))

55 A BinTreeOfX is either
55 -- empty
;5 -- (make-bintree BinTreeOfX X BinTreeOfX)

A BintreeOfX is a binary tree with a
value of type X in each of its nodes.
For example, you might have
BintreeOfSardines. This is, of
course, a different notion of binary
tree than we saw last week.

Example 2: mark-depth (2)

55 mark-depth : BinTreeOfX -> BintreeOfNumber
55 RETURNS: a bintree like the original, but
55 with each node labeled by its depth

Example

CONCOE
CORCED

Here's an example of the argument and result of
mark-depth. The argument is a BintreeOfString
and the result is a BintreeOfNumber, just like the

contract says.

Template for BinTreeOfX

(dE'Fi he (bintree-fn t I"EE) If we follow the recipe for
writing a template, this is
(cond what we get for BintreeOfX.
[(empty? tree) ...]
[else (...

(bintree-fn (bintree-left tree))
(bintree-data tree)
(bintree-fn (bintree-right tree)))]))

Filling in the template

(define (mark-depth tree)
(cond
[(empty? tree) ...]
[else (make-bintree
(mark-depth (bintree-left tree))

(mark-depth (bintree-right tree)))]))

But how do we know the depth?

So let's add a context argument

55 mark-subtree : BinTreeOfX NonNegInt-> BinTreeOfNumbe| The invariant tells
35 GIVEN: a subtree stree of some tree, and a non-neg ji{ us where we are
55 WHERE: the subtree occurs at depth n in the tree in the whole tree

;3 RETURNS: a tree the same shape as stree, but in which
;5 each node is marked with its distance|from the top of the tree
33 STRATEGY: Use template for BinTreeOfX on stree $\\\\\\\

(define (mark-subtree stree n) The RETURNS clause
(cond tells us how our answer
[(empty? stree) empty] fits into the original
[else (make-bintree problem.
(mark-subtree (bintree-left stree)|(+ n 18)
n

(mark-subtree (bintree-right stree) |(+ n 1)))]))

_—

If stree is at depth n, then its sons
are depth n+1. So the WHERE clause

is satisfied at each recursive call.

And we need to reconstruct the
original function, as usual

;3 mark-tree : BinTreeOfX -> BinTreeOfNumber
55 GIVEN: a binary tree
35 RETURNS: a tree the same shape as tree, but in which
;3 each node is marked with its distance from the top of
;5 the tree
;5 STRATEGY: call a more general function
(define (mark-tree tree)
(mark-subtree tree 0))

The whole tree is a subtree, and
its top node is at depth O, so the
invariant of mark-subtree is
satisfied.

What about mutually recursive data
definitions?

* You’ll have two mutually recursive functions to
handle the sub-Sos and sub-Loss— nothing else
changes.

e Let's write this out by writing down the Sos
and Loss templates and adding a context
argument.

10

Template for SoS and LoSS, with
context argument (part 1)

33 GIVEN: a SoS sos that is a subpart of some

;55 larger SoS sos@, and <describe ctxt>

33 WHERE: <describe how ctxt represents the

;3 portion of sos@ that lies above sos>

55 RETURNS: <something in terms of sos and\ sos©>
53 STRATEGY: Use the template for SoS on subsos

(define (sub-sos-fn subsos ctxt) Uli® IR
(d documents the
con

meaning of ctxt
[(string? subsos) ...]
[else (... (sub-loss-fn subsos (.{. ctxt)))]))

When we have a recursive call, we

This still fits the SoS use a new value of the context
template argument, so that sub-loss-fn's

invariant will be true. 11

Template for SoS and LoSS, with
context argument (part 2)

55 GIVEN a LoSS loss that is a subpart of some

55 larger SoS sos@, and a <describe ctxt> | Theinvariantagain

53 WHERE: <describe how ctxt represents the documentsthe
meaning of ctxt

;3 portion of sos@ that lies above loss>

35 RETURNS: <something in terms of loss and sos©>
53 STRATEGY: Use template for Loss on sublos
(define (sub-loss-fn subloss ctxt)
(cond
[(empty? subloss) ...]
[else (...

. (sub-sos-fn (first subloss) (... ctxt))
This still fits the
LoSS template | (Sub-loss-fn (rest subloss) (... ctxt))]))

Each recursive call uses a new value for the context argument,
so that each called function'sinvariantwill be true.

Template for SoS and LoSS, with
context argument (part 3)

55 GIVEN a SoSS sos©O
55 RETURNS: <something>
;5 Strategy: call a more general function
(define (sos-fn sos0)
(sub-sos-fn sos ...))

Pass sub-sos-fn a value for its context argument
that describes the empty context— that is, one
that will make its invariant true.

Of course we
need a function
for the whole SoS!

13

Summary

You should now be able to:

— explain the difference between structural
arguments and context arguments

— understand how context arguments represent
contexts

— document this representation as an invariant in
the purpose statement

— use these ideas to solve problems for lists, trees,
and mutually-recursive data definitions.

14

Next Steps

* |f you have questions about this lesson, ask
them on the Discussion Board

e Do Guided Practice 7.1

* Go on to the nextlesson

